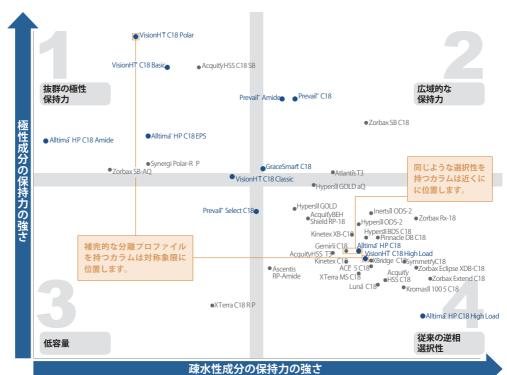
HPLC カラム充てん剤の仕様 1 **下表に記載のない充てん剤に関しては、HPLC カラム充てん剤の

仕様 2 をご参照ください。

低分子用カラム


カラムブランド	充てん剤	孔径 (Å)	表面積 (m²/g)	炭素量 (%)	エンド キャップ	クロマトグラフィー特性	アプリケーション / 利点	USP L-code	
Alltima™ HP Hichrom	C18	190	200	12	0	従来の逆相の保持力と選択性 を示す。	ルーチンアプリケーション向け。	L1	
	C18 EPS	190	200	4	0	極性化合物に対して優れた保持力とピーク対称性を示す。 従来の逆相とは異なる選択性を示す。	C18 では保持力が強すぎる場合の逆相アプリケーション向け。	L1	
	C18 Hi-Load	100	450	24	0	炭素量が最も多く、抜群の保持力と負荷力を持つ。	複雑なサンプルに対して高い分解能を示す。	L1	
	C18 AQ	100	450	20	0	100% 可湿性。	高水系移動相が必要なアプリケー ションに使用。	L1	
	C18 アミド	190	200	12	0	極性修飾をした超低ブリード な充てん剤。マイクロボアに 最適。		L1	
	C8	190	200	8	0	C18 よりも保持容量が小さい。 C18 では保持力が強すぎる場合の返相アプリケーションに使用。			
	シアノ	190	200	4	0	抜群の安定性を示し、カラム ライフが長く再現性が高い。	塩基性薬剤の分析に最適。	L10	
	シリカ	100	450	_	×	高極性の充てん剤。	汎用の順相アプリケーション向け。	L3	
Prevail™ Hichrom	HILIC	120	230	_	×	マイクロボアアプリケーション において、少量の水の使用で 優れた感度を実現する親水ク ロマトグラフィーに使用。	逆相では保持できない、きわめて極 性の強い検体に使用。	L3	
Prevail [™] Hichrom	C18 セレクト	110	350	17	0	100% 水系から 100% 有機系の移動相で安定。	Prevail™ C18と同様の利点を持つが、 極性化合物に対する保持力が弱い。	L1	
	C18	110	350	15	0	100% 水系から 100% 有機系 の移動相で安定。	様々なアプリケーションに応じた各種 移動相条件にも柔軟な切り替えが可 能。マイクロボアアプリケーションで 優れた感度を示す。	L1	
	C8	110	350	8	0	安定性の高い C8 充てん剤。	C18 では保持力が強すぎる、高い疎水性の化合物に使用。	L7	
	フェニル	110	350	7	0	疎水性成分に対する保持容量 が最も小さい。	各種移動相条件の下でも芳香族化合物に対する選択性を示す。	L11	
	シアノ	110	350	_	0	汎用性の高いシアノ、順相と 逆相のどちらでも使用が可能。	順相アプリケーション向け。	L10	
	アミノ	110	350	_	×	100% 水系から 100% 有機系 の移動相で安定。	糖の分離や弱アニオン交換体として 使用。	L8	
	シリカ	110	350	_	×	高極性の充てん剤。	汎用の順相アプリケーション向け。	L3	
	有機酸	110	350	_	0	カラム効率の高いシリカ基、 酸で安定。	一般の有機酸に対して抜群の分解 能、スピード、感度を誇る。 ポリメリッ クカラムよりも経済的。	_	
	アミド	110	350	特許	0	極性修飾された相はユニーク な選択性を示す。	中性 pH の移動相で優れたピーク形状を実現。	L1	
VisionHT™ Dr.Maisch	C18 HighLoad	120	220	11	0	イプ。	広い範囲の化合物に使用できる汎用 タイプ。従来の選択性を示す。疎水 性化合物に対して高容量。	L1	
	C18 塩基性	120	220	5	オリジ ナル (特許)	超高純度シリカ、シリカ表面 の暴露量が調整され極性と非 極性の検体をデュアルモード で分離。	一般の逆相とは代替的な選択性を示す。高極性成分、特に2つ以上の異なる極性基を有する化合物に対して保持力を持つ。酸性移動相を使用せずに塩基性化合物に対して優れた選択性とピーク形状を示す。	L1	
	C18 クラシック	100	200	6	0	炭素量が低く、シリカ暴露量 もわずか。	スピードに対応できるように、結合 力を抑えた逆相分離。極性化合物の 保持力も持つ。	L1	
	C18 極性	100	200	5	×	シリカ暴露量が多く、炭素量は低い。非活性の隣接シラノール基のカバレッジが均一。	ユニークな極性選択性を示す。炭素量が低いので、逆相の溶出時間が最も速く、極性化合物の保持時間は長い。	L1	
	HILIC	120	220	_	×	極性相だが、平衡時間が短い。 出荷溶媒は ACN/ 水。	逆相と比較するとピークは逆に現れる。極性の強い化合物を濃度の高い 有機移動相で分離して MS の感度を 改善する場合に最適。	L3	
	シリカ	120	220	_	×	100% 有機酸の移動相に使用する従来式の順相カラム。	吸着クロマトグラフィーにおける非水 系相溶性化合物の異性体分離に使 用。	L3	

高分子用 / ライフサイエンス用カラム

カラムブランド	充てん剤	孔径 (Å)	表面積 (m²/g)	炭素量 (%)	エンド キャップ	クロマトグラフィー特性	アプリケーション / 利点	USP L-code
Vydac® MS Hichrom(分析) Dr.Maisch(分取)	218MS C18	300	60-110	8	0	ポリメリック、疎水性反応が 最も強く、ユニークな幾何学 的選択性を示す。	酵素消化物(< 12 タンパク質)、も しくは 0-5K MW のバイオ分子向け。	L1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	238MS C18	300	70	4	0	モノメリック結合の為ペプチド の相互反応が増して一般的に ピークカウントが増える。		L1
	208MS C8	300	70	5	0	疎水力が低く、より大きなバイオ分子に適する。	5-10K MW のバイオ分子に最適。	L7
	214MS C4	300	70-110	3	0	C18 や C8 より保持容量が小さく、最小の有機物の分離が必要となるケースや疎水性タンパク質の分離に適する。		L26
	219MS ジフェニル	300	70	4	0	保持容量が最小、芳香族官能 基。	芳香族側鎖を持つタンパク質に高い 選択性を示す。	L11
Everest® Hichrom(分析) Dr.Maisch(分取)	238EV C18	300	70-110	6	0	表面積のカバレッジが最大 で、複雑なサンプルに対して 最高の分解能を示す。 酵素消化物 (> 12 タンパク質) 向に		L1
ProZap™ Dr.Maisch	C18	500	59	3	0	1.5μm、500Å ワイドポア。	無処理タンパク質やペプチドの高速 分離に最適。	L1
Vydac® TP Hichrom(分析) Dr.Maisch(分取)	218TP C18	300	60-110	8	0	ポリメリック C18 の第一世代 の充てん剤で独特な選択性を 示す。	12000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L1
- Timusen(33-32)	238TP C18	300	60-110	4	0	モノメリック C18 の第一世代 の充てん剤。	218TPと同様のアプリケーションに使用するが、異なるC18選択性を示す。	L1
	208TP C8	300	60-110	5	0	C18TPより疎水力が弱い。	10-20K MW のポリペプチド向け。	L7
	214TP C4	300	60-110	3	0	C4 の第一世代の充てん剤。	糖タンパク質、ヘモグロビン変異体、 ヒストン、インシュリン変異体、膜タ ンパク質向け。	L26
	219TP ジフェニル	300	60-110	4	0	最も容量が小さく、ジフェニルの第一世代の充てん剤。	芳香族側鎖を持つポリペプチド、高 分子の疎水性タンパク質、膜貫通タ ンパク質、脂質ペプチド、封入体の 融合タンパク質に使用。	L11

逆相カラム相関図

右の図は、広く知られている L.R. Snyder and J.W. Dolan 1.2.3 のテスト手順に基づき GRACE で作成したもので、一般的 に入手し易いカラムの選択性 の相関図です。グラフには、 pH7 における疎水力の対カチ オン交換容量指数をプロット してあります。疎水力の指数 は検体の一次反応として総容 量を示し、カチオン交換容量 は極性検体の保持力を左右す る二次反応の大きさを示しま す。

¹ Data courtesy of Lloyd Snyder and John Dolan.

² "The "Hydrophobic-subtraction" Model of Reversed-phase Column Selectivity", L.R. Snyder, J.W. Dolan and P.W. Carr, J. Chromatog A, 1060 (2004) 77–116.

³ "A New Look at the Selectivity of Reversed-phase HPLC Columns", L.R. Snyder, J.W. Dolan and P.W. Carr, Anal. Chem., 79 (2007) 3 255–3262.

HPLC カラム充てん剤の仕様 2

低分子用カラム

カラムブランド	充てん剤	基材	粒子形状	孔径 (Å)	表面積 (m²/g)	炭素量 (%)	フェーズタイプ	エンド キャップ	USP L-code
Adsorbosphere™*	C18	シリカ	球形	80	200	12	モノメリック	0	L1
Dr.Maisch	C18 HS	シリカ	球形	60	350	20	モノメリック	0	L1
	C18 UHS	シリカ	球形	60	500	30	モノメリック	0	L1
	C8	シリカ	球形	80	200	8	モノメリック	0	L7
	アミノ (NH ₂)	シリカ	球形	80	200	_	ポリメリック	×	L8
	SAX	シリカ	球形	80	200	_	モノメリック	×	_
	XL C18	シリカ	球形	90	200	11	モノメリック	0	L1
	XL C1 (TMS)	シリカ	球形	90	200	_	モノメリック	0	L13
	XL SAX	シリカ	球形	90	200	_	モノメリック	0	_
	XL SCX	シリカ	球形	90	200	_	モノメリック	0	_
Allsphere™*	ODS-1	シリカ	球形	80	220	7	モノメリック	一部〇	L1
Dr.Maisch	ODS-2	シリカ	球形	80	220	12	モノメリック	0	L1
	C8	シリカ	球形	80	220	6	モノメリック	0	L7
	フェニル	シリカ	球形	80	220	3	モノメリック	0	L11
	シアノ	シリカ	球形	80	220	3.5	モノメリック	×	L10
	アミノ (NH ₂)	シリカ	球形	80	220	3	モノメリック	×	L8
	シリカ	シリカ	球形	80	220	_	_	×	L3
	SAX	シリカ	球形	100	220	4	モノメリック	×	_
	SCX	シリカ	球形	100	220	4	モノメリック	×	_
Alltima™ Hichrom	C18	シリカ	球形	100	340	16	ポリメリック	0	L1
	C18 LL	シリカ	球形	100	340	9	ポリメリック	0	L1
	AQ	シリカ	球形	100	350	15	モノメリック	0	L1
	C8	シリカ	球形	100	340	9	ポリメリック	0	L7
	フェニル	シリカ	球形	100	340	7.5	ポリメリック	0	L11
	シアノ	シリカ	球形	100	340	_	ポリメリック	0	L10
	アミノ(NH ₂)	シリカ	球形	100	340	_	ポリメリック	×	L8
	シリカ	シリカ	球形	100	340	_	_	×	L3
Apex™	ODS	シリカ	球形	100	170	10	ポリメリック	0	L1
Hichrom	ODS II	シリカ	球形	100	170	10.5	モノメリック	0	L1
	C8	シリカ	球形	100	170	7	モノメリック	×	L7
	C8 (EC)	シリカ	球形	100	170	7	モノメリック	0	L7
	フェニル	シリカ	球形	100	170	3	モノメリック	0	L11
	アミノ (NH ₂) II	シリカ	球形	100	170	2	モノメリック	×	L8
	シリカ	シリカ	球形	100	170	_	_	×	L3
Apollo™*	C18	シリカ	球形	100	340	15	モノメリック	0	L1
Hichrom	C8	シリカ	球形	100	340	9	モノメリック	0	L7
	フェニル	シリカ	球形	100	340	8	モノメリック	0	L11
	シリカ	シリカ	球形	100	340	_	_	×	L3
Brava™*	C18 BDS	シリカ	球形	145	185	8.5	モノメリック	0	L1
Dr.Maisch	C18 ODS	シリカ	球形	130	195	8.5	モノメリック	0	L1
	C8 BDS	シリカ	球形	145	185	5.5	モノメリック	0	L7
	フェニル	シリカ	球形	130	195	_	モノメリック	×	L11
	アミノ (NH ₂)	シリカ	球形	130	195	_	モノメリック	×	L8
	シリカ	シリカ	球形	130	195	_	_	×	L3
 混合モード	C18/ カチオン	シリカ	球形	100	350	_	ポリメリック	×	_
Dr.Maisch	C8/アニオン	シリカ	球形	100	350	_	ポリメリック	×	_
	C8/ カチオン	シリカ	球形	100	350	_	ポリメリック	X	_

低分子用カラム

カラムブランド	充てん剤	基材	粒子形状	孔径 (Å)	表面積 (m²/g)	炭素量 (%)	フェーズ タイプ	エンド キャップ	USP L-code
Econosphere™*	C18	シリカ	球形	80	200	10	モノメリック	0	L1
Dr.Maisch	C8	シリカ	球形	80	200	5	モノメリック	0	L7
	シアノ	シリカ	球形	80	200	_	モノメリック	0	L10
	アミノ (NH ₂)	シリカ	球形	80	200	_	ポリメリック	×	L8
	シリカ	シリカ	球形	80	200	_	_	×	L3
Platinum™	C18	シリカ	球形	100	200	6	モノメリック	0	L1
Dr.Maisch	C18 EPS	シリカ	球形	100	200	5	モノメリック	×	L1
	C8	シリカ	球形	100	200	4	モノメリック	0	L7
	C8 EPS	シリカ	球形	100	200	2.5	モノメリック	×	L7
	フェニル	シリカ	球形	100	200	_	モノメリック	0	L11
	シアノ	シリカ	球形	100	200	_	モノメリック	×	L10
	アミノ (NH ₂)	シリカ	球形	100	200	_	モノメリック	×	L8
	シリカ	シリカ	球形	100	200	_	_	×	L3
	SAX	シリカ	球形	100	200	_	モノメリック	×	_
Genesis®	C18	シリカ	球形	120	300	18	モノメリック	0	L1
Hichrom	AQ	シリカ	球形	120	300	15	モノメリック	0	L1
	C8	シリカ	球形	120	300	11	モノメリック	×	L7
	C8 (EC)	シリカ	球形	120	300	11	モノメリック	0	L7
	フェニル	シリカ	球形	120	300	9.4	モノメリック	0	L11
	シアノ	シリカ	球形	120	300	7	モノメリック	0	L10
	シリカ	シリカ	球形	120	300	_	_	×	L3
Great Smart™ *	C18	シリカ	球形	120	220	10	モノメリック	0	L1
Grom™ Sil ** Dr.Maisch	ODS-3 CP (カプセル)	シリカ	球形	120、300	320、170	15、6	ポリメリック	×	L1
	ODS-4 HE (親水性エント [*] キャップ)	シリカ	球形	120、200	300、200	16、11	モノメリック	0	L1
	ODS-5 ST (スタンダード)	シリカ	球形	60、120、 200	580、300、 200	22、17、 12	モノメリック	0	L1
	ODS-7 pH (pH- 安定)	シリカ	不定形	80	510	22	ポリメリック	×	L1
	オクチル -5 CP (カプセル)	シリカ	球形	120、300	320、170	10、5.5	ポリメリック	×	L7
	フェニル -2 CP (カプセル)	シリカ	不定形	120、300	320、170	7、4	ポリメリック	×	L11
	シアノ -3 CP (カプセル)	シリカ	球形	120	320	4	ポリメリック	×	_
	アミノ -2 PA (架橋処理済みポリア ミノ)	シリカ	球形	120	300	_	ポリメリック	×	L8
	ジオール	シリカ	球形	60、120、 200	580、300、 200	_	モノメリック	×	L20

^{* 2016}年より GraceSmart™から名称変更となりました。 Dr.Maisch が製造。

高分子用カラム

カラムブランド	充てん剤	基材	粒子形状	孔径 (Å)	表面積 (m²/g)	炭素量 (%)	フェーズ タイプ	エンド キャップ	USP L-code
Macrosphere™**	GPC 60	シリカ	球形	60	450	_	ポリメリック	×	L25
Dr.Maisch	GPC 100	シリカ	球形	100	350	_	ポリメリック	×	_
	GPC 300	シリカ	球形	300	100	_	ポリメリック	×	_

^{**} 製品の型番等に関しましては、弊社(TEL: 042-645-0031、Email: info@systech-tyo.com)までお問い合わせください。